- BOULOT, G., ROJAS, C., BENTLEY, G. A., POLJAK, R. J., BAR-BIER, E., LE GUERN, C & CAZENAVE, P. A. (1987). J. Mol. Biol. 194, 577-578.
- BRÜNGER, A. T. (1990). Acta Cryst. A46, 46-57.
- BRÜNGER, A. T., LEAHY, D. J., HYNES, T. R. & FOX, R. O. (1991). J. Mol. Biol. 221, 239-256.
- COLMAN, P. M., DEISENHOFER, J., HUBER, R. & PALM, W. (1976). J. Mol. Biol. 100, 257-282.
- COLMAN, P. M., FEHLHAMMER, H. & BARTELS, K. (1976). In *Crystallographic Computing Techniques*, edited by F. R. AHMED, K. HUML & B. SEDLÁČEK, pp. 248-258. Copenhagen: Munksgaard.
- CROWTHER, R. A. (1972). In *The Molecular Replacement Method*, edited by M. G. ROSSMANN, pp. 173-178. New York: Gordon & Breach.
- CROWTHER, R. A. & BLOW, D. M. (1967). Acta Cryst. 23, 544-548.
- CYGLER, M. & ANDERSON, W. F. (1988a). Acta Cryst. A44, 38-45.
- Cygler, M. & Anderson, W. F. (1988b). Acta Cryst. A44, 300-308.
- Cygler, M. & Desrochers, M. (1989). Acta Cryst. A45, 563-572.
- DOESBURG, H. M. & BEURSKENS, P. T. (1983). Acta Cryst. A39, 368-376.
- DRIESSEN, H. P. C., BAX, B., SLINGSBY, C., LINDLEY, P. F., MAHADEVAN, D., MOSS, D. S. & TICKLE, I. J. (1991). Acta Cryst. B47, 987-997.
- FISCHMANN, T. O., BENTLEY, G. A., BHAT, T. N., BOULOT, G., MARIUZZA, R. A., PHILLIPS, S. E. V., TELLO, D. & POLJAK, R. J. (1991). J. Biol. Chem. 266, 12915-12920.

- FUJINAGA, M. & READ, R. J., (1987). J. Appl. Cryst. 20, 517-521.
 HARADA, Y., LIFCHITZ, A., BERTHOU, J. & JOLLES, P. (1981).
 Acta Cryst. A37, 398-406.
- HUBER, R. (1965). Acta Cryst. 19, 353-356.
- International Tables for X-ray Crystallography (1974). Vol. I. Birmingham: Kynoch Press.
- KARTHA, G. & PARTHASARATHY, R. (1965). Acta Cryst. 18, 749-753.
- LASCOMBE, M. B., ALZARI, M., BOULOT, G., SALUDJIAN, P., TOUGARD, P., BEREK, C., HABA, S., ROSEN, E. M., NICON-HOF, A. & POLJAK, R. J. (1989). *Proc. Natl Acad. Sci. USA*, 86, 607-611.
- NAVAZA, J. (1987). Acta Cryst. A43, 645-653.
- READ, R. J. (1986). Acta Cryst. A42, 140-149.
- READ, R. J. & SHIERBEEK, A. J. (1988). J. Appl. Cryst. 21, 490-495.
- ROSSMANN, M. G. (1960). Acta Cryst. 13, 221-226.
- ROSSMANN, M. G. & BLOW, D. M. (1962). Acta Cryst. 15, 24-31.
- SCHIERBEEK, A. J., SWARTE, M. B. A., DIJKSTRA, B. W., VRIEND, G., READ, R. J., HOL, W. G. J. & DRENTH, J. (1989). J. Mol. Biol. 206, 365-379.
- SERC Daresbury Laboratory (1986). CCP4. A Suite of Programs for Protein Crystallography. SERC Daresbury Laboratory, Warrington, England.
- TAYLOR, C. A. & MORLEY, K. A. (1959). Acta Cryst. 12, 101-105.
- TICKLE, I. J. (1985). In Molecular Replacement. Proceedings of the Daresbury Study Weekend, 15-16 February 1985, edited by P. A. MACHIN, pp. 22-26.
- YEATES, T. O. & RINI, J. M. (1990). Acta Cryst. A46, 352-359.

Acta Cryst. (1992). A48, 322-328

$(p2, 2^{l})$ -Symmetry Three-Dimensional Space Groups $G_{3}^{l,p2}$

BY S. V. JABLAN

The Mathematical Institute, Knez Mihajlova 35, Belgrade, Yugoslavia

(Received 29 April 1991; accepted 15 November 1991)

Abstract

By use of the antisymmetric characteristic method, $(p2, 2^l)$ -symmetry three-dimensional space groups $G_3^{l,p2}$ (p=3, 4, 6) are derived.

Introduction

Crystallographic (p2)-symmetry three-dimensional space groups G_3^{p2} (p = 3, 4, 6) were derived by Karpova (1980*a*, 1980*b*), Chubarova (1983) and Zamorzaev, Karpova, Lungu & Palistrant (1986). From 73 symmorphic space groups G_3 were derived 1025 junior G_3^{p2} (96 $G_3^{32}+438 G_3^{42}+491 G_3^{62}$), from 54 hemisymmorphic G_3 , 945 junior G_3^{p2} (75 $G_3^{32}+444 G_3^{42}+426 G_3^{62}$) were derived and from 103 asymmorphic G_3 , 1650 junior G_3^{p2} (138 $G_3^{32}+785 G_3^{42}+727 G_3^{63}$) were derived. Thus the category G_3^{p2} (p = 3, 4, 6) consists of 3620 junior groups (309 $G_3^{32}+1667 G_3^{42}$ 1644 G_3^{62}). By the use of the generalized antisymmetric characteristic method (AC method) introduced by the author (Jablan, 1990, 1991), some of these results will be corrected and all the crystallographic space groups of colour multiple antisymmetry $G_3^{l,p2}$ (p = 3, 4, 6) will be derived.

1. Some general remarks on (p2) and $(p2, 2^{l})$ symmetry

(p2) symmetry is a particular case of general P symmetry with $P = D_p$, where D_p is the irregular dihedral permutation group, generated by the permutations $e_1 = 1, ..., p$ and $e_2 = (2 p), ..., ([(p+1)/2] p - [(p+1)/2]+2) (p \ge 3)$, satisfying the relations

$$e_1^p = e_2^2 = (e_1 e_2)^2 = E_1$$

For p = 4q + 2 $(q \in N)$, the group D_p is reducible, so the relationship

$$D_{4q+2} \simeq \{e_1^2, e_2\} \times \{e_1^{2q+1}\} = D_{2q+1} \times C_2$$

holds, where $\{e_1^2, e_2\}$ and $\{e_1^{2q+1}\}$ denote, respectively,

0108-7673/92/030322-07\$03.00

the groups D_{2q+1} and C_2 generated by e_1^2 , e_2 and e_1^{2q+1} (Zamorzaev, Galyarskij & Palistrant, 1978; Zamorzaev, Karpova, Lungu & Palistrant, 1986).

By introducing l anti-identity transformations e_3, \ldots, e_{l+2} ($l \in N$) (Zamorzaev, 1976; Zamorzaev & Palistrant, 1980) commuting between themselves and with e_1 and e_2 , we have ($p2, 2^l$) symmetry, which is the group $P = D_p \times C_2^l$. At p = 4q + 2, because of the reducibility of the group D_{4q+2} , we have the relationship $D_{2q+1} \times C_2^l = D_{4q+2} \times C_2^{l-1}$, indicating the equivalence of $[(2q+1)2, 2^l]$ and $[(4q+2)2, 2^{l-1}]$ symmetry.

Definition 1: (a) A $(p2, 2^l)$ symmetry group is called the M^m -type $(p2, 2^l)$ symmetry group if it is an M^m -type group regarded as an *l*-multiple antisymmetry group.

(b) A $(p2, 2^l)$ symmetry group $G^{l,p2}$ has complete $(p2, 2^l)$ symmetry if, for every i (i = 1, 2, ..., l+2), the e_i transformation can be obtained in the group $G^{l,p2}$ as an independent $(p2, 2^l)$ symmetry transformation. Otherwise, the group $G^{l,p2}$ has incomplete $(p2, 2^l)$ symmetry.

(c) A complete $(p2, 2^l)$ symmetry group $G^{l,p2}$ is a junior $(p2, 2^l)$ symmetry group if all the relations given in the presentation of its generating symmetry group G remain satisfied after replacing the generators of the group G by the corresponding $(p2, 2^l)$ symmetry-group generators.

In this work only the junior M^m -type $(p2, 2^l)$ symmetry groups will be considered. Because of the aforementioned relation between $[(2q+1)2, 2^l]$ and $[(4q+2)2, 2^{l-1}]$ symmetry groups, to derive all crystallographic $(p2, 2^l)$ symmetry groups (p = 3, 4, 6), (32) and (42) symmetry groups will be sufficient. The derivation will be realized by use of the generalized AC method.

Definition 2: Let all the products of (p2) symmetry generators of a group G^{p2} , within which each generator participates at most once, be formed and then subsets of transformations equivalent with regard to (p2) symmetry be separated. The resulting system is called the antisymmetric characteristic of the group G^{p2} and denoted by $AC(G^{p2})$ (Jablan, 1990, 1991).

In every transition from the antisymmetric characteristic AC(G) of a generating group G to the antisymmetric characteristic $AC(G^{p^2})$ of a (p^2) symmetry group G^{p^2} derived from it, at p = 2q + 1 every e_1 transformation has no influence on the existential conditions for the junior M^m type $(p^2, 2^l)$ symmetry groups (definition 1) and does not produce any change of the AC(G); its possible change can be produced only by e_2 transformation. Hence, we can conclude that the derivation of $[(2q+1)2, 2^l]$ symmetry groups from a [(2q+1), 2] symmetry group coincides with the derivation of (l+1)-multiple antisymmetry M^m -type groups $(2 \le m \le l+1)$ from its corresponding e_2 -antisymmetry group. Owing to the equivalence of $[(2q+1)2, 2^l]$ and $[(4q+2)2, 2^{l-1}]$ symmetry, the only non-trivial problem is the derivation of $(p2, 2^l)$ symmetry groups at $p = 0 \pmod{4}$ (Jablan, 1991).

At $p=0 \pmod{2}$ the problem of differentiating between complete and incomplete junior M^m -type $(p2, 2^l)$ symmetry groups can be simply solved by the use of the homomorphism of the subgroup $C_p = \{e_1\}$ of the group D_p to the group C_2 :

$$e_1^{2k-1} \to e_1, \qquad e_1^{2k} \to E \ [1 \le k \le (p+1)/2].$$

2. $(p2, 2^{l})$ -symmetry three-dimensional space groups $G_{3}^{l,p2}$ (p = 3, 4, 6)

The application of the theoretical assumptions given above will be illustrated by examples of junior (p2, 2')-symmetry three-dimensional space groups of M^m type (p = 3, 4, 6) derived in the family with the common generating symmetry group G = 7s (P2/m), $\{a, b, c\}(2:m)$ with $AC \{m, cm\}\{2, 2a, 2b, 2ab\}$ belonging to the AC equivalency class VII [Jablan, 1987, Table 1]. At p = 3 we have two junior (32) symmetry groups (Karpova, 1980a):

(1) $\{a, b, c^{(3)}\}(2; m^{2});$

2)
$$\{a^{(3)}, b, c\}(2^{2}):m$$

Because of the e_2 transformation m^{21} , the AC of the first group is of the form $\{e_2, e_2\}\{E, E, E, E\}$ and the AC of the second is of the form $\{E, E\}\{e_2, e_2, e_2, e_2\}$. Hence, for both of them, $N_1 = 7$, $N_2 = 64$, $N_3 = 700$, $N_4 = 6720$ (Jablan, 1987). So we have the following junior (32, 2) symmetry groups:

$$\{\underline{a}, b, c^{(3)}\{(2:m^{2}), \{a, b, \underline{c}^{(3)}\{(2:m^{2}), \{\underline{a}, b, c^{(3)}\{(\underline{2}:m^{2}), \{\underline{a}, b, \underline{c}^{(3)}\{(\underline{2}:m^{2}), \{\underline{a}, b, \underline{c}^{(3)}\{(\underline{2}:m^{2}), \{a, b, \underline{c}^{(3)}\{(\underline{2}:m^{2}), \{a, b, \underline{c}^{(3)}\{(\underline{2}:m^{2}), \{\underline{a}, b, \underline{c}^{(3)}\{(\underline{2}:m^{2}), \{\underline{a}^{(3}, b, \underline{c}\}((\underline{2}):m^{2}), \{\underline{a}^{(3)}, b, \underline{c}\}((\underline{a}):m^{2}), \{\underline{a}^{(3$$

where the antisymmetries are underlined.

Because of the equivalence between (32, 2) symmetry and (62) symmetry, to the 14 junior (32, 2) symmetry groups obtained correspond the 14 (62) symmetry junior groups:

$$\{a^{(2}, b, c^{(3)}(2:m^{2}), \{a, b, c^{(6)}(2:m^{2}), \{a, b, c^{(3)}(2^{(2)}:m^{2}), \{a^{(2}, b, c^{(3)}(2:m^{22}), \{a, b, c^{(6)}(2^{(2)}:m^{2}), \{a, b, c^{(3)}(2^{(2)}:m^{22}), \{a, b, c^{(6)}(2^{(2)}:m^{2}), \{a^{(3}, b, c^{(3)}(2^{(2)}:m^{2}), \{a^{(3}, b, c^{(2)}(2^{(2)}:m), \{a^{(3}, b, c^{(2)}(2^{(2)}:m), \{a^{(6)}, b, c^{(2)}(2^{(2)}:m), \{a^{(6)}, b, c^{(2)}(2^{(2)}:m), \{a^{(3)}, b, c^{$$

Since $(32, 2^{l})$ and $(62, 2^{l-1})$ symmetry are equivalent, we may conclude that from these 14 (62) symmetry groups, $N_1 = 128$ junior (62, 2) symmetry groups of the M^1 type, $N_2 = 1400$ junior (62, 2²) symmetry groups of the M^2 type and $N_3 = 13$ 420 junior (62, 2³) symmetry groups of the M^3 type will be derived.

At $p = 0 \pmod{2}$, the form of $AC(G^{p^2})$ is obtained using the homomorphism mentioned in § 1. By treating six (42) symmetry groups in this way, we have the following results: the first three of them, $\{a, b, c^{(4)}\}$. $(2:m^{2)}), \{a, b, c^{(4)}(2^{(2)}:m^{2)})$ and $\{a^{(2)}, b, c^{(4)}(2:m^{2)})$ possess AC of the form $\{e_2, e_1e_2\}\{E, E, E, E\}$ and, for each of them, $N_1 = 8, N_2 = 64$ and $N_3 = 448$. For example, from the first group $\{a, b, c^{(4)}(2:m^{2)})$, the eight junior (42, 2) symmetry groups of M^1 type:

$\{\underline{a}, b, c^{(4)}\}(2:m^{2}),$	$\{a, b, c^{(4)}\}(\underline{2}: m^{2}),$
$\{\underline{a}, b, \underline{c}^{(4)}\}(2:m^{2)}),$	$\{\underline{a}, b, c^{(4)}\}(2:\underline{m}^{2)}),$
$\{a, b, \underline{c}^{(4)}\}(\underline{2}; m^{2)}),$	$\{a, b, c^{(4)}\}(\underline{2}: \underline{m}^{2}),$
$\{\underline{a}, \underline{b}, \underline{c}^{(4)}\}(2:\underline{m}^{2)})$	$\{a, b, \underline{c}^{(4)}\}(\underline{2}: \underline{m}^{2)})$

will be obtained. The three other (42) symmetry groups,

$$\{a^{(4}, b, c\}(2^2): m), \{a^{(4}, b, c\}(2^2): m^{(2)}\}$$

 $\{a^{(4}, b, c^{(2)}(2^2): m), \{a^{(4)}, b, c^{(2)}\}$

have AC of the form $\{E, E\}\{e_2, e_2, e_1e_2, e_1e_2\}$, so, for each of them, $N_1 = 11$, $N_2 = 132$ and $N_3 = 1344$ (Jablan, 1987). For example, from the first group, $\{a^{(4)}, b, c\}(2^{(2)})$: m), the 11 junior (42, 2) symmetry groups of M^1 type:

${a^{(4}, \underline{b}, c}(2^{2)}:m),$	${a^{(4}, b, \underline{c}}(2^{2)}; m),$
${a^{(4}, b, c}(2^{2)}:\underline{m}),$	$\{\underline{a}^{(4}, b, \underline{c}\}(2^{2)}: m),\$
$\{\underline{a}^{(4}, b, c\}(2^{2)}: \underline{m}),\$	$\{a^{(4},\underline{b},\underline{c}\}(2^{2)}:m),$
${a^{(4}, \underline{b}, c}(2^{2)}: \underline{m}),$	${a^{(4}, b, \underline{c}}(\underline{2}^{2)}:m),$
${a^{(4}, b, c}(\underline{2}^2:\underline{m}),$	$\{\underline{a}^{(4}, b, \underline{c}\}(\underline{2}^2:m)$
$\{\underline{a}^{(4}, b, c\}(\underline{2}^2:\underline{m})$	

will be obtained.

In the same manner, the partial catalogue of all junior $(p2, 2^l)$ -symmetry three-dimensional space groups of M^m -type, $G_3^{l,p2}$ (p = 3, 4, 6), is produced, making possible their complete cataloguing (Jablan, 1987). The final results corresponding respectively to symmorphic, hemisymmorphic and asymmorphic $(p2, 2^l)$ symmetry groups are summarized in Tables 1, 2 and 3. The connection between the international symbols (*International Tables for Crystallography*, 1987) and the symbols of symmorphic, hemisymmorphic and asymmorphic groups introduced by Fedorov can be established using the data from the monographs by Koptsik (1966) and Zamorzaev (1976).

525

1

Table 1. Catalogue of junior M^m -type $(p2, 2^l)$ symmetry symmorphic three-dimensional space groups $G_3^{l,p2}$

	(32) (42)	(62)	(32)(42) (62)	(32) (42) (62)				
25	1 1	1	24 <i>s</i>	16	48s 3	2 12			
3 s	1 2	4	25 <i>s</i>	14	49 <i>s</i> 1	2			
4 <i>s</i>	15	3	26s 1	63	50s 2	12			
5 <i>s</i>	1 2	4	27 s 1	3 1	51s 3	13			
6 <i>s</i>	16	4	28 <i>s</i> 1	97	52s 1	1 1			
7 s	2 6	14	29 <i>s</i> 1	14 6	53 <i>s</i> 2	28			
85	2 14	16	30 <i>s</i> 1	20 7	54s 5	2 20			
9s	1 4	8	31s 1	20 6	55s 3	2 12			
105	2 14	22	32 <i>s</i> 1	17 8	56s 4	2 16			
115	1 6	4	335 1	19 7	57s 2	2 8			
125	1 0	5	345 1	14 6	58s 3	4 30			
135	1 12	16	358 1	12 4	635	2			
143	2 16	20	305 1	30 10	65 S I	2			
165	1 8	6	40s 7	52 14 A	67 6 1	2			
175	1 8	14	41 5 1	2	68 1	1			
185	1 6	16	425 1	2	69 1	2 2			
195	2 24	38	435 1	1 1	70 \$ 1	~ ~			
20 <i>s</i>	1 12	10	44s 4	1 4	71s 1	4			
21 <i>s</i>	1 12	18	45s 6	1 6	72s 1	4 6			
22 <i>s</i>	4		46s 4	1 4	73s 1	2			
23 s	6		47s 2	2 8		-			
	(32.2)	(12 2)	(62.2)	$(22, 2^2)$	$(12 \ 2^2)$	$((2, 2^2))$			
	(32, 2)	(42,2)	(02, 2)	(32, 2)	(42,2)	(62,2)			
2s	1	1	1	1	1	1			
35	4	12	10	16	48	56			
43	3	0 8	22	22	20	112			
65	4	12	12	12	32	112			
7s	14	57	128	128	588	1400			
8 <i>s</i>	16	96	120	120	480	672			
9s	8	32	96	96	432	1516			
10 <i>s</i>	22	120	228	228	768	1680			
115	4	12	12	12					
12 <i>s</i>	5	36	42	42	288	336			
13 <i>s</i>	16	120	300	300	2304	5712			
14 <i>s</i>	14	128	168	168	960	1344			
15s	20	144	192	192	960	2688			
165	6	24	24	24					
1/5	14	96	168	168	768	1344			
105	10	120	450	450	3/44	1/220			
205	10	88	96	004 96	512	10404			
203	18	336	432	432	8064	10080			
22 <i>s</i>		16	102	452	0004	10000			
24 <i>s</i>		160			1152				
25 <i>s</i>		56							
26 <i>s</i>	3	18	6	6					
27 s	1								
285	1	72	54	54	432	336			
293	7	136	24	24	769	224			
315	6	80	24	24	/08	330			
325	8	156	60	60	1056	336			
33 s	7	104	54	54	528	336			
34 <i>s</i>	6	56	24	24					
35s	4	40	12	12					
36 <i>s</i>	16	528	300	300	9504	5712			
37 <i>s</i>	14	384	168	168	3072	1344			
40 <i>s</i>	4								
41 <i>s</i>	2								
42 <i>s</i>	2								
43 <i>s</i>	1								
445	4								
435	0								
405	4 9	Q	24	24					
480	12	o R	24	24					
49 4	2	U	50	50					
505	12		48	48					
51s	3		10						

		1	Fable 1	(cont.)		Table 2 (cont.)								
	(32, 2)	(42, 2)	(62, 2	$(32, 2^2)$	$(42, 2^2)$	$(62, 2^2)$		(32, 2)	(42, 2)	(62, 2)	$(32, 2^2)$	$(42, 2^2)$	$(62, 2^2)$	
53 <i>s</i>	8	8	24	24			10 <i>h</i>	6	24	24	24	. , ,	. , ,	
54 <i>s</i>	20	8	60	60			11 <i>h</i>	20	112	192	192	768	1344	
55s	12	8	36	36			12h	12	64	48	48			
50s	10	8	48 24	48 24			13 <i>n</i> 14 <i>h</i>	12	40 24	48	40			
58 <i>s</i>	30	48	288	288	384	2016	15h	6	20	24	24			
65 <i>s</i>	2						16h	2						
66s	2						17h	26	184	456	456	3168	8568	
08 <i>5</i> 69 <i>5</i>	2						10 <i>n</i> 19 <i>h</i>	5	90 18	24	24	328	84	
71 <i>s</i>	4						20 <i>h</i>	24	208	264	264	1440	2016	
72 <i>s</i>	6	16	24	24			21 <i>h</i>	36	416	768	768	8160	16128	
73 <i>s</i>	2						22h 23h	22	240	252	252	1920	2016	
	$(32, 2^3)$	$(42, 2^3)$	$(62, 2^3)$	$(32, 2^4)$ (42,	$(62, 2^4)$	$(32, 2^5)$	23h 24h	4	8	12	12	1240	2010	
2 <i>s</i>	1						25h		24					
35	56						26h		32					
5s	112	5776	12440	12440			28 <i>n</i> 29 <i>h</i>	4	40	12	12			
85	672	5570	13440	13440			30 <i>h</i>	4	40	12	12			
9s	1516	5376	20160	20160			31 <i>h</i>	4	32	12	12			
10 <i>s</i>	1680						32h	4	20	12	12			
125	336	22256	80640	90640			33 n 34 h	3	32	12	12			
145	1344	52250	80040	80040			35h	10	208	96	96	1440	672	
155	2688						36h	10	232	96	96	1536	672	
17s	1344						37h 28h	6	80	24	24	2688	1244	
185	17220	137088	685440 241920	685440 3870 241920	720 19998720) 19998720	36n 42h	4	330	108	108	2086	1544	
20s	672	112090	241920	241920			43h	6						
21 <i>s</i>	10080	129024	161280	161280			44 <i>h</i>	4						
28 <i>s</i>	336						45h 46h	6						
305	336						40 <i>h</i>	4						
335	336						48h	18	16	72	72			
36 <i>s</i>	5712	129024	80640	80640			53h	2						
37s	1344						54n	2						
503	2010							$(32, 2^3)$	$(42, 2^3)$	$(62, 2^3)$	(32, 24)			
							3 h	336						
Tabl	e 2. C	'atalogu	e of j	unior M ^m	'-type (p	(2, 2')-	5 h	336						
sym	metry h	emisym	morphic	three-din	nensional	space	0 <i>n</i> 11 <i>h</i>	1344						
•	•	-	groups	$G_{3}^{l,p_{2}}$		•	17h	8568	43008	120960	120960			
			0 1	5			18 <i>h</i>	1008						
	(32) (42)	(62)	(32)	(42) (62)	(32)	(42) (62)	19h 20h	84 2016						
1 <i>h</i>	1 2	3	19h 1	6 5	37h 1	20 6	20 <i>n</i> 21 <i>h</i>	16128	118272	241920	241920			
2h	1 4	1	20h 2	22 24	38h 1	28 14	22 <i>h</i>	2016						
3n 4h	2 9	8	21n 2 22h 2	22 36	40h 1		23h	2016						
5 h	1 3	7	23h 2	18 24	41 <i>h</i> 1		35n 36h	672						
6h	2 10	20	24h 1	4 4	42h 2	2 4	38 <i>h</i>	1344						
/n 8h	2 11	8	25n 26h	8	43n 3 44h 2	2 6								
9h	1 4	6	27 h	6	45h 3	26	_							
10 <i>h</i>	1 8	6	28h	10	46h 4	2 8	Fr	om the	results	of the c	lerivation	n of the	junior	
11h	2 12	20	29h 1	11 4	47h 2	2 4	(32,	2)-symn	netry syr	nmorphi	ic group	s, we c	an first	
12 <i>n</i> 13 <i>h</i>	2 10	12	31 <i>h</i> 1	12 4	51h 1	4 10	conc	lude the	at, becai	use of th	ne equiva	alence b	oetween	
14 <i>h</i>	2 6	12	32h 1	8 4	52h 1		(32,	2) and ((62) sym	metry, tl	here exis	t 496 (n	ot 491)	
15h	1 6	6	33h 1	8 3	53h 1	2	(Kaı	pova 1	980a; (Chubaro	va, 198	3; Zam	orzaev,	
10 <i>n</i> 17 <i>h</i>	2 14	26	34n 1 1 35h 1	22 10	54 <i>n</i> I	2	Kar	oova, Lu	ungu &	Palistrar	nt, 1986)	junior	(32, 2)-	
18h	2 12	17	36h 1	26 10			symi	metry s	symmor	ohic th	ree-dime	nsional	space	
	(32 2)	(42 2)	(67 7	$(32 2^2)$	$(42 \ 2^2)$	$(62 - 2^2)$	grou	ps and	conseau	ently, th	ie same r	umber	of sym-	
17.	(32, 2)	(44, 2)	(02, 2	, (34,4)	(74,4)	(02,2)	mor	phic (62) symme	trv grou	ns. This	differen	ce from	
1 n 2 h	3 1	8	0	o			the	works	nentione	d impli	es that	correcti	ns are	
3 h	12	58	72	72	264	336	neco	cearu fo	r the (67)	svmmet	ry grous	c in the	amilian	
4 <i>h</i>	8	36	24	24			with the concreting groups $10 - (C222)$ $1 - 22$							
5h 6h	7 20	24	54	54	144 672	336	(D)	me ge	n the for	f for 1	the	222) a	$\frac{110}{25}$	
7 h	8	28	24	24	072	1.544	(r+2m). For the first family, the correct number 0							
8 <i>h</i>	3	4	6	6			(02)	symmet	iy groups	s is 22 (n	0(18) an	uiorine	secona	
9h	6	16	24	24			it is 8 (not 7) (Karpova, 1980 <i>a</i>).							

Tabl	e 3.	0	Catalogu	e of	junior	M^{m} -typ	e (p2, 2	2′)-				Та	ble 3 (<i>c</i>	ont.)		
sym	metry	,	asymme	orpnic groups	three $G_3^{(l,p2)}$	e -dimensio	nal	sp	ace		(32	2, 2)	(42, 2)	(62, 1)	(32, 2 ²)	(42, 2 ²)	(62, 2 ²)
	(32) (4	12)	(62)	(3)	2) (42) (e	52)	(3)	2) (42) (62	40 <i>a</i>	2	6 4	16 56	24	24		
10	1	1	(02)	24.0	.) (+2) (C	52)	().	2) (42)(02	420	1	3	8	6	6		
20	2	1 6	8	34a 35a	4	5/0	1 1	20	6	430	2	4	32	12	12		
3a	2	7	6	36a	14	70	1	1	1	440	2	4	24	12	12		
4 <i>a</i>	2	9	11	37a	12	72	i 2	i	2	450	2	4	24	12	12		
5a	2 1	10	10	38a	8	736	ı 2	1	2	464	1	6	40	24	24		
6a	1	4	4	39a	6	740	ı 1			4/6	1	2	88	54	54	480	336
/a 80	2	0	9	40a 1	4	6 750	1			496	4	2					
9a	2	6	14	42a 1	8	3 77	ι 1 • 1			500	2	4	16	12	12		
10 <i>a</i>	2 1	10	8	43a 1	12	4 784	1			510	2	2					
11 <i>a</i>	2	6	8	44 <i>a</i> 1	8	4 794	1 2		4	520	1	4	24	12	12		
12a	2	6	4	45a 1	8	4 800	2		4	540	1	10	144	06	06	060	672
130	2 1	0	12	46 <i>a</i> 1	10	6 814 7 814	. 3	2	6	550		10	192	96	96	1248	672
15a	3 2		30	480 1	14	7 83	. 2	2	4	560	2	6	56	24	24	12.10	0.2
16a	3 1	6	30	49 <i>a</i> 1	4	2 844	2	2	8	570	2	6	64	24	24		
17a	3 1	18	18	50 <i>a</i> 1	8	4 850	2	2	8	580	2	6	48	24	24		
18 <i>a</i>	3 2	28	42	51a 1	4	2 864	1 5	2	10	590	2	6	48	24	24		
19 <i>a</i>	3 2	22	42	52a 1	10	4 874	1 3	4	18	614	2	10	288	96	96	2016	672
20a 21a	2	4	10	53a I	16 1	2 886	1 3	4	18	624	1	8	120	90 60	90 60	1/28	0/2
22a	2	9	17	55 <i>a</i> 1	22 1	0 930	· 1			630	2	6	80	24	24	400	350
23a	3 1	8	30	56a 1	14	6 954	1			644	2	6	80	24	24		
24 <i>a</i>	2 1	15	17	57a 1	16	6 964	1		2	650	2	6	80	24	24		
25a	2 1	2	10	58a 1	12	6 976	1			654	1	6	56	24	24		
26a 27a	3 1	4	18	59a 1	12	6 984	1		1	706	4	1	00	24	24		
$\frac{27u}{28a}$	3 1	4	10	60a = 1	30 I 28 I	0 996	1		2	710		1					
29a	1	4	6	62 <i>a</i> 1	20 1	8 101	. 1		2	720	2	2					
30 <i>a</i>		2		63a 1	20	6 1020	1		2	730	1	2					
31 <i>a</i>		2		64 <i>a</i> 1	20	6 103	r 1		4	794	2	4					
32a		4		65a 1	20	6				804	1	4					
33a		4		66 <i>a</i> I	14	6				824	1	4					
	(32, 1	2)	(42, 2)	(62,	1) (32	$(42, 2^2)$ (42,	2²)	(62.	(2^2)	834	2	4					
1 <i>a</i>	1		1	1		1		(,	. – ,	844	1	8	8	24	24		
2 <i>a</i>	8		20	32		32	4	1	12	854	1	8	8	24	24		
3a	6		10	12		12				804	1	10	16	70			
4a	11		54	81		81 28	8	5	04	884		18	16	72	72		
5u 6a	10		12	30		36				964	1	2	10	12	12		
7a	9		18	30		30				98 <i>a</i>	ı	1					
8 <i>a</i>	1									99 <i>a</i>	l	2					
9 <i>a</i>	14		48	108	1	08 28	8	6	72	1004	l ,	2					
10a	8		24	24		24				1024	1	2					
12a	。 4		10	24		24				103 a	1	4		12	12		
13a	12		40	48		48					()	•••••	(40.03)	(((
14a	48		408	900	9	00 720	0	171	36		(3	$52, 2^{5}$	$(42, 2^3)$	$(62, 2^3)$	(32, 24)		
15a	30		192	288	2	88 124	8	20	16	20	I	112					
150	30		144	288	2	.88 96	0	20	16	40		504					
180	42		336	504	5	72	0	40	~~	140	: / 1'	072 7136	96768	241020	241020		
19a	42		264	504	5	04 200	o 2	40.	32 37	15a		2016	20700	241920	241920		
20 <i>a</i>	22		120	252	2	52 96	ō	20	16	16 <i>a</i>	. :	2016					
21 <i>a</i>	10		48	96	_	96 38	4	6	72	18a		4032					
22a	17		72	150	1	50 43	2	10	08	19a		4032					
230	50		160	288	2	88 105	6	20	16	200		4010					
24a 25a	1/		108	150	1	50 62	4	10	08	210	с 1	1008					
26a	18		30 56	30 77		30 72				230		2016					
27a	10		28	36		36				24a		1008					
28a	18		56	72		72				47 a	ı	336					
29a	6		16	24		24				54a	!	672					
35a 36a			16 40							55a 60 a	[672 672					
37 a			32							610		672					
38 <i>a</i>			16							62a	!	336					

For the junior $(p2, 2^{l})$ -symmetry symmorphic three-dimensional space groups of M^{m} type, the numbers N_{m}^{p2} (p=3, 4, 6) are:

$$\begin{split} N_0^{p2} &= 96 \ G_3^{32} + 438 \ G_3^{42} + 496 \ G_3^{62} = 1030; \\ N_1^{p2} &= 496 \ G_3^{1,32} + 3876 \ G_3^{1,42} + 4709 \ G_3^{1,62} = 9081; \\ N_2^{p2} &= 4709 \ G_3^{2,32} + 45 \ 053 \ G_3^{2,42} + 71 \ 713 \ G_3^{2,62} \\ &= 121 \ 475; \\ N_3^{p2} &= 71 \ 713 \ G_3^{3,32} + 551 \ 040 \ G_3^{3,42} + 1 \ 283 \ 520 \ G_3^{3,62} \\ &= 1 \ 906 \ 273; \\ N_4^{p2} &= 1 \ 283 \ 520 \ G_3^{4,32} + 3 \ 870 \ 720 \ G_3^{4,42} \\ &+ 19 \ 998 \ 720 \ G_3^{4,62} = 25 \ 152 \ 960; \\ N_5^{p2} &= 19 \ 998 \ 720 \ G_3^{5,32} = 19 \ 998 \ 720. \end{split}$$

From the results of the derivation of the junior (32, 2)-symmetry hemisymmorphic groups we may first conclude that, because of the equivalence between (32, 2) and (62) symmetry, there exist 413 (not 426) (Karpova, 1980b; Chubarova, 1983; Zamorzaev, Karpova, Lungu & Palistrant, 1986) junior (32, 2)-symmetry hemisymmorphic threedimensional space groups and, consequently, the same number of hemisymmorphic (62) symmetry groups. This difference from published results implies that corrections are also necessary for the (62) symmetry groups in the families with the generating groups 1h (Pb), 2h (Bb), 3h (P2/b), 4h (B2/b), 21h (Cmma), 22h (Ccca) and 53h (Pn3n). For these families, the correct number of (62) symmetry groups is, respectively, 3 (not 4), 1 (not 2), 12 (not 13), 8 (not 10), 36 (not 38), 22 (not 24) and 2 (not 6) (Karpova, 1980b).

For the junior $(p2, 2^{l})$ -symmetry hemisymmorphic three-dimensional space groups of M^{m} type the numbers N_{m}^{p2} (p = 3, 4, 6) are:

$$\begin{split} N_0^{p2} &= 75 \ G_3^{32} + 444 \ G_3^{42} + 413 \ G_3^{62} = 932; \\ N_1^{p2} &= 413 \ G_3^{1,32} + 3022 \ G_3^{1,42} + 3498 \ G_3^{1,62} = 6933; \\ N_2^{p2} &= 3498 \ G_3^{2,32} + 24 \ 012 \ G_3^{2,42} + 37 \ 884 \ G_3^{2,62} \\ &= 65 \ 394; \\ N_3^{p2} &= 37 \ 884 \ G_3^{3,32} + 161 \ 280 \ G_3^{3,42} + 362 \ 880 \ G_3^{3,62} \\ &= 562 \ 044; \\ N_4^{p2} &= 362 \ 880 \ G_3^{4,32} = 362 \ 880. \end{split}$$

From the results of the derivation of the junior (32, 2)-symmetry asymmorphic groups, we may first conclude that, because of the equivalence between (32, 2) and (62) symmetry, there exist 725 (not 727) (Karpova, 1980b; Chubarova, 1983; Zamorzaev, Karpova, Lungu & Palistrant, 1986) junior (32, 2)-symmetry asymmorphic three-dimensional space

groups and, consequently, the same number of asymmorphic (62) symmetry groups.

For the junior $(p2, 2^{i})$ -symmetry asymmorphic three-dimensional groups of M^{m} type, the numbers N_{m}^{p2} are:

$$\begin{split} N_0^{p2} &= 138 \ G_3^{32} + 785 \ G_3^{42} + 725 \ G_3^{62} = 1648; \\ N_1^{p2} &= 725 \ G_3^{1,32} + 4467 \ G_3^{1,42} + 5184 \ G_3^{1,62} = 10 \ 376; \\ N_2^{p2} &= 5184 \ G_3^{2,32} + 25 \ 216 \ G_3^{2,42} + 40 \ 600 \ G_3^{2,62} \\ &= 71 \ 000; \\ N_3^{p2} &= 40 \ 600 \ G_3^{3,32} + 96 \ 768 \ G_3^{3,42} + 241 \ 920 \ G_3^{3,62} \\ &= 379 \ 288; \\ N_4^{p2} &= 241 \ 920 \ G_3^{4,32} = 241 \ 920. \end{split}$$

3. Concluding remarks

For the junior (p2, 2')-symmetry three-dimensional space groups of the M^m type, the numbers $N_m(G_3^{p2})$ (p=3, 4, 6) are:

$$\begin{split} N_0(G_3^{p2}) &= 309 \ G_3^{32} + 1667 \ G_3^{42} + 1634 \ G_3^{62} = 3610; \\ N_1(G_3^{p2}) &= 1634 \ G_3^{1,32} + 11 \ 365 \ G_3^{1,42} + 13 \ 391 \ G_3^{1,62} \\ &= 26 \ 390 \\ N_2(G_3^{p2}) &= 13 \ 391 \ G_3^{2,32} + 94 \ 281 \ G_3^{2,42} + 150 \ 197 \ G_3^{2,62} \\ &= 257 \ 869; \\ N_3(G_3^{p2}) &= 150 \ 197 \ G_3^{3,32} + 809 \ 088 \ G_3^{3,42} \\ &+ 1 \ 888 \ 320 \ G_3^{3,62} = 2 \ 847 \ 605; \\ N_4(G_3^{p2}) &= 1 \ 888 \ 320 \ G_3^{4,32} + 3 \ 870 \ 720 \ G_3^{4,42} \\ &+ 19 \ 998 \ 720 \ G_3^{4,62} = 25 \ 757 \ 760; \\ N_5(G_3^{p2}) &= 19 \ 998 \ 720 \ G_3^{5,32} = 19 \ 998 \ 720. \end{split}$$

The possible physical applications of the groups

derived are given in the work by Koptsik (1988).

References

- CHUBAROVA, YU. S. (1983). Derivation of Junior Space Groups of P Symmetry. Kishinev: Shtiintsa.
- International Tables for Crystallography (1987). Vol. A. Dordrecht: Kluwer Academic Publishers.
- JABLAN, S. V. (1987). Acta Cryst. A43, 326-337.
- JABLAN, S. V. (1990). Publ. Inst. Math. 47 (61), 39-55.
- JABLAN, S. V. (1991). Mat. Vesn. In the press.
- KARPOVA, YU. S. (1980a). Derivation of Symmorphic Junior Space Groups of (p2) Symmetry. Kishinev Univ. Press. (Deposited in VINITI, No. 855-80 Dep.)
- KARPOVA, YU. S. (1980b). Derivation of Hemisymmorphic and Asymmorphic Junior Space Groups of (p2) Symmetry. Kishinev Univ. Press. (Deposited in VINITI, No. 3173-80 Dep.)
- KOPTSIK, V. A. (1966). Shubnikov groups. Moscow Univ. Press. In Russian.
- KOPTSIK, V. A. (1988). Comput. Math. Appl. 16, 407-424.

ZAMORZAEV, A. M. (1976). The Theory of Simple and Multiple Antisymmetry. Kishinev: Shtiintsa.

ZAMORZAEV, A. M., GALYARSKIJ, E. I. & PALISTRANT, A. F. (1978). Colored Symmetry, its Generalizations and Applications. Kishinev: Shtiintsa.

Acta Cryst. (1992). A48, 328-335

ZAMORZAEV, A. M., KARPOVA, YU. S., LUNGU, A. P. & PALI-STRANT, A. F. (1986). *P Symmetry and its Further Development*. Kishinev: Shtiintsa.

ZAMORZAEV, A. M. & PALISTRANT, A. F. (1980). Z. Kristallogr. 151, 231-248.

A Pentagonal Quasiperiodic Tiling with Fractal Acceptance Domain

By E. Zobetz

Institut für Mineralogie, Kristallographie und Strukturchemie, Technische Universität Wien, Getreidemarkt 9, A-1060 Vienna, Austria

(Received 31 May 1991; accepted 22 November 1991)

Abstract

The structural properties of a pentagonal quasiperiodic tiling obtained by new deflation and matching rules are described. Two new types of vertices occur that cannot be found in generalized Penrose patterns. Tile and vertex frequencies as well as average edge valencies of vertices are enumerated. The geometry underlying the acceptance domain involves self-similar fractals. Two methods of constructing the fractally shaped acceptance domain have been found.

1. Introduction

Considerable progress has been made on quasiperiodic structures during the last few years. Most of the work was focused on original (Penrose, 1974, 1979; Gardner, 1977; de Bruijn, 1981; Mackay, 1982; Levine & Steinhardt, 1986; Socolar & Steinhardt, 1986; Henley, 1986; Jarić, 1986; Kumar, Sahoo & Athithan, 1986; Socolar, 1989) and generalized Penrose tilings (Duneau & Katz, 1985; Pavlovitch & Kléman, 1987; Ishihara & Yamamoto, 1988; Whittaker & Whittaker, 1988; Zobetz & Preisinger, 1990). This is not surprising since there exists a large number of tools with which to analyze them: matching and deflation rules (Penrose, 1974; Gardner, 1977; de Bruijn, 1981; Levine & Steinhardt, 1986; Socolar & Steinhardt, 1986; Socolar, 1989), grid construction methods (de Bruijn, 1981; Gähler & Rhyner, 1986; Levine & Steinhardt, 1986; Socolar & Steinhardt, 1986; Korepin, Gähler & Rhyner, 1988; Socolar, 1989) and strip-projection methods (de Bruijn, 1981; Kramer, 1982; Kramer & Neri, 1984; Duneau & Katz, 1985; Elser, 1986; Ostlund & Wright, 1986; Jarić, 1986; Kramer & Zeidler, 1989; Socolar, 1989).

Although one has to keep in mind that for any given orientational symmetry it is possible to construct an infinite number of quasiperiodic tilings that can be grouped into LI* classes (Levine & Steinhardt, 1986; Socolar & Steinhardt, 1986; Socolar, 1989), comparatively little attention has been paid to other pentagonal tilings (Gähler & Rhyner, 1986; Socolar & Steinhardt, 1986; Olami & Kléman, 1989) than original and generalized Penrose tilings. There is no reason to exclude a priori other tilings. Up to now we have no reason to suggest that properties of original Penrose tilings, such as matching rules, which force nonperiodicity, have direct physical significance, in the sense that the growth probability at a given site depends only on its local neighbourhood, since only growth algorithms with short-range interactions are of physical interest (Levitov, 1988; Onada, Steinhardt, DiVincenzo & Socolar, 1988, 1989; Jarić & Ronchetti, 1989; Socolar, 1990; Olami, 1991; Ingersent & Steinhardt, 1991). However, there are few proven results in this relatively new field of investigation. Hence, one is led to the conclusion that this key problem is by no means completely settled. Socolar (1989, p. 10548) stated: 'It is worth emphasizing again that the PLI⁺ class tilings discussed in this paper, though they play a special role in the analysis of the symmetries of interest here, are not necessarily privileged candidates for modeling physical structures. It is possible that a different LI class would be required for the description of a given physical material.' Therefore tilings that have the same orientational symmetry and tile shapes as Penrose tilings. but clearly have very different local and global configurations of tiles, may also be of interest and relevance to the study of quasicrystalline materials. Baake, Schlottmann & Jarvis (1991) introduced the new equivalence concept of mutual local derivability. They prove that under special conditions a tiling can

© 1992 International Union of Crystallography

0108-7673/92/030328-08\$03.00

^{*} Two tilings are locally isomorphic and belong to the same local isomorphism (LI) class if any finite region that occurs in one also occurs in the other.

[†] PLI denotes the LI class of the original Penrose tilings.